Construction using concrete reinforced with renewable materials

2022-04-23 00:52:38 By : Mr. JACKY NIU

Click here to sign in with or

Tomorrow's building material is here today. Textile-reinforced concrete (TRC) is durable, formable in diverse shapes and suitable for lightweight construction. As the name suggests, conventional TRC is reinforced with carbon or glass-fiber fabrics rather than steel. A research team at the Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut WKI is now replacing these fabrics with eco-friendly natural fibers. These alternatives rival conventional concrete's performance, but leave a smaller carbon footprint, and cost less to make. Researchers will present a prototype of a natural fiber-reinforced concrete bridge at the BAU 2019 trade fair in Munich on January 14 to 19, 2019.

Germany's bridges are in sad shape. TÜV Rheinland says that one in every two is decaying. Reinforced concrete corrodes easily. Oxidation takes a toll on the reinforcing steel well before any telltale sign of damage is visible. Now the industry is looking to relegate cracks in concrete, and rusting steel, to history. Engineers and architects are opting for textile-reinforced concrete, a noncorroding building material with a long service life and the same structural properties as reinforced concrete. Components made of this material can be as thin as a few centimeters. It may be cast to make delicate, lightweight structures with reinforcing textiles that bend into practically any shape. Alongside bridges, the material is also suitable for facades and ceilings. Designers use it for seating furniture and sculptures.

The secret to this high-performance concrete is that it is reinforced with carbon, glass or polymer fibers rather than steel. Researchers at the Fraunhofer WKI in Braunschweig want to replace these fibers with a textile based on renewable raw materials, a move that would pay big dividends for the environment and climate. They are going with local products, in this case flax, which may be spun or woven. The researchers can add strands of polymer fiber to the flax to create a hybrid fabric tailored to the given component's requirements. The scientists at Fraunhofer WKI's Application Center for Wood Fiber Research HOFZET® use a double-rapier loom with a Jacquard attachment to weave this material mix. With this weaving machine – the only one of its kind in Europe – experts are able to produce innovative lightweight composite materials with complex, application-specific textile structures and integrated functions. The machine combines conventional and sustainable materials in a way that is both cost efficient and technically sophisticated. They are then embedded in high-performance concrete with the structural density that protects the fibers almost completely against weathering. This weave is also modified with natural resins.

Shrugging off adverse environmental impacts

The flax-based textile is embedded in the given component in layers. Its stiffness is variable, so it can be arranged in the desired shape. And it could conceivably be cast to create curved contours such as domes and rounded wall elements. The liquid concrete, specially developed in-house at Fraunhofer WKI's Center for Lightweight and Environmentally Friendly Buildings (ZELUBA®), is then poured on the textile. Ecological sustainability was very much on developers' minds; they went to great pains to make do with low quantities of primary raw materials. The material mix consists of a very fine

aggregate, water, concrete additives and admixtures, and a reinforcing textile made of flax. "The quality of reinforced concrete made with a flax fabric is higher than that of the reinforced concrete in bridges. The matrix – that is, the structure – is so dense that harmful substances cannot penetrate the component. This results in a far longer service life of several decades," says Jan Binde, a scientist at the ZELUBA®.

A composite with remarkable longevity

The combination of flax and concrete proved in trials to be an ideal composite, as confirmed by durability and load-bearing tests on the new, eco-friendly textile-reinforced concrete. "The natural fibers mesh very well with the building material, which is also attributable to the fact that we can control how the textile is fixed in the concrete. The textile's specific surface is variable," says the researcher.

TRC made of renewables enables builders to erect light and lean bridges that may also be crossed by motor vehicles. "A reinforced concrete bridge with a span of 15 meters would be about 35 to 40 centimeters thick, while its flax counterpart would be considerably slimmer at 12 to 16 centimeters. This saves a lot of material. Thin layers are doable," says Binde. Researchers' efforts to optimize the innovative building material continue while approval from building authorities is pending. Explore further SCRIM: An innovative method for 3-D concrete printing Provided by Fraunhofer-Gesellschaft Citation: Construction using concrete reinforced with renewable materials (2018, October 1) retrieved 22 April 2022 from https://phys.org/news/2018-10-concrete-renewable-materials.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

More from Physics Forums | Science Articles, Homework Help, Discussion

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

Medical research advances and health news

The latest engineering, electronics and technology advances

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.